Aller au contenu
AIR-DEFENSE.NET

[Blindage] Tarian, RPGNet et autres solutions "souples".


Serge
 Share

Messages recommandés

Ouvrons un petit sujet sur les protections balistiques souples anti-roquettes. C'est un domaine spéciale et assez nouveau qui en terme de coût et de poids semble particulièrement rentable.

ST Kinetics, AmSafe Join Forces to Market Tarian RPG Protection

Published on September 14th, 2011

Written by: Tamir Eshel

Image IPB

Singapore Technologie’s Kinetics (ST Kinetics) has teamed with AmSafe, the developer and producer of Tarian RPG protection system, to offer the lightweight, textile-based RPG protection system on its Warthog all terrain armored vehicles. The Warthog is currently in service with the British Army in Afghanistan. A lighter version – the Bronco – is in service with the Singapore land forces. The two companies announced today their intention to join forces in marketing the Tarian counter-RPG solution worldwide. The Memorandum of Understanding outlines plans for both companies to collaborate with the aim of ST Kinetics to offer AmSafe’s RPG protection as an option on its vehicles and market the product in certain territories where they already have a strong presence.

Tarian was developed as a lightweight modular system designed to replace the traditional bar or slat armor at a weight saving of up to 98%. The technology has been tested in the UK and US, enduring over 650 firing shots, verifying the system’s performance and multi-hit capability. Arizona based AmSafe, the producer of the Tarian system specializes in safety and securement products for the aviation industry, providing seat belts, cargo and barrier net restraints and air bags. Its military products also include the textile armor and various cargo restraints systems.

http://defense-update.com/20110914_st-kinetics-amsafe-join-forces-to-market-tarian-rpg-protection.html

Lien vers le commentaire
Partager sur d’autres sites

Bonsoir,

Si j'ai bien compris les explications présentées notamment sur ce forum, les slat armor agissent:

- en perturbant le mécanisme de mise en feu

- si détonnation il y a, en éloignant la charge creuse, minimisant son efficacité (30-50 cm font-ils d'ailleurs vraiment la différence??)

Concernant le premier mécanisme, ne risque-t-on pas de voir apparaitre assez rapidement des contre mesures : par exemple un système de mise à feu basé non plus sur un capteur de pression, mais sur un accéléromètre (forte déccélération -> boom  :O ), mécanisme qu'un salt armor ne pourrait contrer?

Merci d'avance,

Bibouz

Lien vers le commentaire
Partager sur d’autres sites

  • 11 years later...

knot-material-1.jpg

Pas vraiment un blindage mais on se dit que ce nanomatériau fait d'un arrangement de nœuds pourrait au moins avoir un effet pour liner anti-éclats :

GreerLabKnots.max-500x500.gif

"Les nœuds plus petits que les cheveux humains rendent les matériaux exceptionnellement résistants

Dans le cadre des dernières avancées en matière de matériaux nano et microarchitecturés, les ingénieurs de Caltech ont développé un nouveau matériau fabriqué à partir de nombreux nœuds microscopiques interconnectés. Les nœuds rendent le matériau beaucoup plus résistant que les matériaux de structure identique mais non noués: ils absorbent plus d'énergie et sont capables de se déformer davantage tout en étant capables de retrouver leur forme d'origine intacte. Ces nouveaux matériaux noués peuvent trouver des applications en biomédecine ainsi que dans des applications aérospatiales en raison de leur durabilité, de leur biocompatibilité possible et de leur déformabilité extrême. "

https://www.caltech.edu/about/news/knots-smaller-than-human-hair-make-materials-unusually-tough

Révélation

The knots make the material far tougher than identically structured but unknotted materials: they absorb more energy and are able to deform more while still being able to return to their original shape undamaged. These new knotted materials may find applications in biomedicine as well as in aerospace applications due to their durability, possible biocompatibility, and extreme deformability.

"The capability to overcome the general trade-off between material deformability and tensile toughness [the ability to be stretched without breaking] offers new ways to design devices that are extremely flexible, durable, and can operate in extreme conditions," says former Caltech graduate student Widianto P. Moestopo (MS ‘ 19, PhD '22), now at Lawrence Livermore National Laboratory. Moestopo is the lead author of a paper on the nanoscale knots that was published on March 8 in Science Advances.

The tensile strength of a material constructed with microscale knots (left), compared to that of a material that lacks knots but is otherwise structurally identical (right).

Moestopo helped develop the material in the lab of Julia R. Greer, the Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation director of the Kavli Nanoscience Institute; and senior author of the Science Advances paper. Greer is at the forefront of the creation of such nano-architected materials, or materials whose structure is designed and organized at a nanometer scale and that consequently exhibit unusual, often surprising properties.

"Embarking on understanding how the knots would affect the mechanical response of micro-architected materials was a new out-of-the-box idea," Greer says. "We had done extensive research on studying the mechanical deformation of many other types of micro-textiles, for example, lattices and woven materials. Venturing into the world of knots allowed us to gain deeper insights into the role of friction and energy dissipation, and proved to be meaningful."

Each knot is around 70 micrometers in height and width, and each fiber has a radius of around 1.7 micrometers (around one-hundredth the radius of a human hair). While these are not the smallest knots ever made—in 2017 chemists tied a knot made from an individual strand of atoms—this does represent the first time that a material composed of numerous knots at this scale has ever been created. Further, it demonstrates the potential value of including these nanoscale knots in a material—for example, for suturing or tethering in biomedicine.

The knotted materials, which were created out of polymers, exhibit a tensile toughness that far surpasses materials that are unknotted but otherwise structurally identical, including ones where individual strands are interwoven instead of knotted. When compared to their unknotted counterparts, the knotted materials absorb 92 percent more energy and require more than twice the amount of strain to snap when pulled.

The knots were not tied but rather manufactured in a knotted state by using advanced high-resolution 3D lithography capable of producing structures in the nanoscale. The samples detailed in the Science Advances paper contain simple knots—an overhand knot with an extra twist that provides additional friction to absorb additional energy while the material is stretched. In the future, the team plans to explore materials constructed from more complex knots.

Moestopo's interest in knots grew out of research he was conducting in 2020 during the COVID-19 lockdowns. "I came across some works from researchers who are studying the mechanics of physical knots as opposed to knots in a purely mathematical sense. I do not consider myself a climber, a sailor, or a mathematician, but I have tied knots throughout my life, so I thought it was worth trying to insert knots into my designs," he says.

The paper has a tongue-in-cheek title—"Knots are Not for Naught: Design, Properties, and Topology of Hierarchical Intertwined Microarchitected Materials." Co-authors include Caltech graduate students Sammy Shaker and Weiting Deng. This research was funded by the National Science Foundation through Moestopo's Graduate Research Fellowship Program, Caltech's Clinard Innovation Fund, Greer's Vannevar Bush Faculty Fellowship, and the Office of Naval Research.

 

  • J'aime (+1) 2
Lien vers le commentaire
Partager sur d’autres sites

Il y a 7 heures, Kamelot a dit :

Sujet techniquement très interressant, merci de l'avoir ouvert.

Très modestement, j'ai trouvé cet article :

https://plastic-lemag.com/Les-blindes-le-plastique-en-renfort

Avec en suite de cet article l'interview sur FOB des inventeurs de la B2Box, un blindage mou à fonction anti IED :

https://www.forcesoperations.com/amp/fob-interview-karine-thoral-pierre-et-jerome-raynal/

Citation

La « B2 Box » (Blast Balistic Box) et « BBOX » que nous avons mise  au point est un assemblage de tissus et de mousses liés par des pontages textiles entre les peaux. Ce pontage se consomme sous l’effet du souffle et donc absorbe une partie de l’énergie de l’agression. Tous les paramètres du matériau (épaisseur, densité, raideur…) sont modulables en fonction de la performance attendue et donc donner des propriétés bien déterminées à la protection.

 

  • J'aime (+1) 2
Lien vers le commentaire
Partager sur d’autres sites

Rejoindre la conversation

Vous pouvez publier maintenant et vous inscrire plus tard. Si vous avez un compte, connectez-vous maintenant pour publier avec votre compte.

Invité
Répondre à ce sujet…

×   Collé en tant que texte enrichi.   Restaurer la mise en forme

  Seulement 75 émoticônes maximum sont autorisées.

×   Votre lien a été automatiquement intégré.   Afficher plutôt comme un lien

×   Votre contenu précédent a été rétabli.   Vider l’éditeur

×   Vous ne pouvez pas directement coller des images. Envoyez-les depuis votre ordinateur ou insérez-les depuis une URL.

 Share

  • Statistiques des membres

    5 965
    Total des membres
    1 749
    Maximum en ligne
    Aure-Asia
    Membre le plus récent
    Aure-Asia
    Inscription
  • Statistiques des forums

    21,5k
    Total des sujets
    1,7m
    Total des messages
  • Statistiques des blogs

    4
    Total des blogs
    3
    Total des billets
×
×
  • Créer...